Saltar el menú de navegación e ir al contenido

EROSKI CONSUMER, el diario del consumidor

Buscador

logotipo de fundación

Canales de EROSKI CONSUMER

Secciones dentro de este canal: Medio ambiente


Estás en la siguiente localización: Portada > Medio ambiente > Energía y ciencia

Tipos de contenidos: Medio ambiente

Lagundu elikadurari buruzko itzulpen automatikoa zuzentzen
^

Biomímica: Ciencia basada en la naturaleza

Animales como la termita o plantas como el loto inspiran tecnologías eficientes y ecológicas como sistemas de ventilación de edificios y alas de avión

 
Edificio Eastgate
Imagen: Damián Farrell

Edificios eficientes que recrean termiteros, sistemas de limpieza ecológicos basados en el loto, materiales que no se desgastan a partir de un lagarto del Sahara, herramientas de corte que simulan los dientes de las ratas, etc. La ciencia de la Biomímica (etimológicamente imitar la vida) subraya que la naturaleza lleva millones de años resolviendo problemas de manera eficiente y ecológica. Por ello, propugna estudiarla para aplicar en necesidades humanas las mejores ideas. El potencial futuro es enorme, ya que esta simbiosis entre biología y tecnología sólo se ha aprovechado hasta ahora en un 10%.

Los ejemplos de diseños basados en sistemas naturales son cada vez más diversos, y en algunos casos espectaculares. El sistema de ventilación del edificio Eastgate, ubicado en Harare (Zimbabwe) se basa en los montículos de las termitas Macrotermes Michaelseni, que mantienen estable la temperatura interior de sus nidos a pesar de las variaciones térmicas extremas del exterior. Diseñado por el arquitecto Mick Pearce, en colaboración con ingenieros de la empresa Arup, esta construcción utiliza sólo el 10% de la energía que necesita un edificio convencional de su mismo tamaño, lo que le ha permitido ahorrar en sus cinco primeros años más de dos millones y medio de euros en aire acondicionado.

En este sentido, las termitas están proporcionando buenas pistas a los científicos. El investigador de la Universidad inglesa de Loughborough, Rupert Soar, dirige el proyecto Termes, que proporciona imágenes en 3D de gran precisión de los termiteros, con el objetivo de saber mejor cómo mantienen la temperatura y regulan la humedad.

El potencial futuro es enorme, ya que esta simbiosis entre biología y tecnología sólo se ha aprovechado hasta ahora en un 10%

Por otra parte, el arquitecto Eugene Tsui diseñaba una casa en Berkeley, California, inspirada en la médula de las gaviotas y en las estructuras capilares de dos dinosaurios. Por su parte, el equipo de arquitectos de Grimshaw cubría la Terminal Internacional Waterloo en Londres con paneles de vidrio que simulaban las escamas de las serpientes.

Asimismo, los diseños basados en la biomímica le han servido a más de un arquitecto para ganar proyectos en los que la sostenibilidad y la ecología eran indispensables. Por ejemplo, Roger Frechette ha diseñado un rascacielos, la Pearl River Tower, para la ciudad china de Guangzhou (Cantón). Esta torre, cuya finalización se prevé en 2009, se basa en las esponjas de mar para aprovechar más eficientemente el viento y el sol, de manera que pueda ahorrar hasta un 60% de energía.

Super pegamento de mejillón

La arquitectura no es la única disciplina en imitar la naturaleza. Científicos de la Universidad del estado de Pennsilvania han desarrollado unas alas para aviones que cambian de forma dependiendo de la velocidad y duración del vuelo, basándose en ciertas especies de aves que utilizan este sistema para realizar vuelos más eficientes. El biólogo de la Universidad de Oxford Andrew Parker ha estudiado un escarabajo que vive en el sofocante desierto de Namibia. Para aguantar el calor, este insecto está cubierto de unos parches alternos de cera que le permiten aprovechar las gotas de agua. Por ello, este sistema puede ser utilizado en materiales para recoger el agua en condiciones de aridez.

 
Termitero
Imagen: Dustin M. Ramsey

Los moluscos también han inspirado varios diseños. La empresa estadounidense PAX Scientific ha creado varios modelos de hélices, ventiladores e impulsores basados en la piel de estos invertebrados, cuya especial forma les permite aprovechar los líquidos y gases con menos fricción y más eficientemente. Así, los expertos de esta empresa han conseguido reducir hasta en un 85% las necesidades energéticas y el ruido hasta en un 75%.

Por otra parte, biólogos del Laboratorio Nacional de Ingeniería y Medio Ambiente de Idaho (EEUU) han clonado cinco proteínas de mejillón para desarrollar un adhesivo natural resistente al agua. Los mejillones producen una resina con propiedades adhesivas que no desmerecen en nada a cualquier superpegamento comercial.

En Medicina, la biomímica se utiliza para reemplazar o mejorar partes del cuerpo con versiones mecánicas, como los implantes cocleares para personas sordas. Asimismo, Kwabena Boahen, profesor de la Universidad de Pensilvania, desarrolló una retina artificial que procesaba imágenes de la misma manera que las naturales. En la actualidad, Boahen se encuentra en la Universidad de Stanford trabajando en un proyecto de cerebros artificiales.

Por su parte, el sónar de los murciélagos ha servido por ejemplo a la empresa británica Sound Foresight para crear un bastón que permite a los invidentes desplazarse de forma más sencilla y segura.

En otras ciencias aplicadas, la biomímica tiene también muchas posibilidades. Greg Parker, profesor de Electrónica y Ciencias Informáticas de la Universidad de Southampton, y el investigador Luca Plattner han reproducido los mecanismos físicos y las nanoestructuras que permiten a las alas de las mariposas tener colores tan brillantes. Las aplicaciones de esta investigación en campos como la optoelectrónica o las telecomunicaciones pueden ser múltiples.

Por su parte, Julian Vincent, profesor de biomimética en la Universidad inglesa de Bath desarrolló en 2004 una ropa inteligente que se adapta a los cambios de temperatura basándose en las piñas. La industria del automóvil tampoco se ha quedado al margen: Por ejemplo, Mercedes-Benz presentó en 2006 un "coche biónico", cuya extraordinaria resistencia y aerodinámica se basan en un pez tropical, el Ostracion Cubicus, conocido como pez cofre.

Asimismo, las Ciencias del Espacio también pueden sacar rendimiento a diseños biológicos. En este sentido, la Agencia Espacial Europea cuenta con un equipo de investigadores en Biomimética para aplicar soluciones a las misiones espaciales.

Nombres propios de la Biomímica

Los orígenes modernos de la Biomímica, también conocida como Biomimética o Biónica, suelen atribuirse al ingeniero Richard Buckminster Fuller. Por su parte, el posterior desarrollo conceptual correspondería a la científica Janine Benyus, que en 1997 publicaba el libro de referencia "Biomimicry: Innovation Inspired by Nature". Años más tarde, la investigadora creaba, junto a Dayna Baumeister, la Biomimicry Guild, un grupo de científicos que, además de investigar, ofrecen formación y consultoría sobre estos sistemas, e incluso ofrecen millones de dólares a quienes resuelvan lo que llaman "los diez desafíos de la sostenibilidad".

No obstante, la idea de imitar la naturaleza no es nueva. En la antigüedad, conscientemente o no, diversas creaciones humanas tenían tras de sí una fuerte inspiración natural. El genial Leonardo da Vinci desarrolló varios modelos de máquinas voladoras y barcos con un claro referente biológico. En épocas más recientes, por ejemplo, el inventor Percy Shaw creó en 1935 los reflectores de ojo de gato tras descubrir que estos felinos poseen un sistema de células que reflectan el más mínimo rayo de luz. Por su parte, el ingeniero suizo George de Mestral inventó en 1948 el velcro tras observar cómo los ganchos de las semillas se agarraban al pelo de su perro.

En cualquier caso, el potencial de estos sistemas es enorme. Según el profesor Vincent, tan sólo se ha aprovechado hasta ahora el 10% de las posibles simbiosis entre biología y tecnología en términos de mecanismos utilizados.




Otros servicios


Buscar en
Fundación EROSKI

Validaciones de esta página

  • : Conformidad con el Nivel Triple-A, de las Directrices de Accesibilidad para el Contenido Web 1.0 del W3C-WAI
  • XHTML: Validación del W3C indicando que este documento es XHTML 1.1 correcto
  • CSS: Validación del W3C indicando que este documento usa CSS de forma correcta
  • RSS: Validación de feedvalidator.org indicando que nuestros titulares RSS tienen un formato correcto