Saltar el menú de navegación e ir al contenido

EROSKI CONSUMER, el diario del consumidor

Buscador

logotipo de fundación

Canales de EROSKI CONSUMER


Estás en la siguiente localización: Portada > Salud > Investigación médica

Tipos de contenidos: Salud

^

Cómo el organismo mantiene el ritmo

El reloj biológico tiene que ver no sólo con los ciclos de vigilia-sueño sino con la presión sanguínea, la temperatura corporal o el efecto de los fármacos

Un organismo es el resultado de infinidad de subsistemas que funcionan de forma coordinada con un reloj interno que marca el ritmo. Un reloj que, además, marcha al compás de lo que ocurre en el entorno: día-noche, primavera-verano... En las últimas décadas el estudio sobre cómo funciona ese reloj se ha convertido en un área en auge. Pero falta mucho por saber. ¿Cómo se ajustan los relojes interno y externo en el cuerpo? o ¿en qué cambios dentro de cada célula se traduce el tic-tac del reloj? Dos grupos de investigación pioneros en el estudio de los ritmos circadianos acaban de presentar dos importantes avances y uno de ellos puede dar pistas sobre el porqué de la depresión estacional.

El gen Fbxl3

El ritmo de los organismos está inscrito en los genes, y en los últimos años los investigadores se han dedicado a buscar en organismos modelo, como la mosca Drosophila o el ratón, las principales rutas genéticas implicadas en la marcación del tiempo. Como ocurre con los sistemas que cumplen una función importante en el cuerpo, estas redes de genes parecen haberse conservado a lo largo de la evolución: son similares, por ejemplo, en insectos y mamíferos. No son redes sencillas. En ratones, desde el descubrimiento del primer gen relacionado con ritmos circadianos en 1997 -un gen llamado Clock-, se han encontrado otros cinco más que resultan críticos. Y esos genes, a su vez, controlan otras amplias familias de genes con patrones de actividad cíclica.

Joseph Takahashi, de la Northwestern University y el Howard Hughes Medical Institute (EEUU) y uno de los pioneros en la investigación de los relojes biológicos -autor del hallazgo de Clock-, acaba de publicar en la revista Cell el hallazgo de otro gen más, también clave, en ratones. «Aunque ya había sido identificado el grupo de genes que forma el bucle de retroalimentación circadiano, teníamos razones para sospechar que hay más genes implicados en la maquinaria», ha explicado Takahashi. El nuevo gen hallado es especial.

En los últimos años los investigadores se han dedicado a buscar las principales rutas genéticas implicadas en la marcación del tiempo

Es el primero relacionado con las oscilaciones circadianas -diarias- en las cantidades y tipos de proteínas dentro de la célula: «Asumimos que para que el reloj circadiano funcione hay proteínas que tienen que aparecer y desaparecer [en la célula] en escalas temporales relativamente breves», dice Takahashi, «pero no nos preocupábamos de cómo ocurre esto». Ahora ya tienen una pista. El nuevo gen relacionado con el control del reloj biológico se llama Fbxl3, y pertenece a una familia de genes que ayudan a destruir determinadas proteínas cuando dejan de ser necesarias dentro de la célula. En concreto, se ocupan de «señalizar» a dos proteínas con oscilación circadiana, Cryptochrome 1 y Cryptochrome 2, para su destrucción.

Y estas dos proteínas - en concreto, su degradación- son a su vez esenciales para que se activen los genes Period, que marcan el inicio de un nuevo ciclo circadiano. Recapitulando: Fbxl3 ayuda a quitar de en medio a las proteínas Cryptochrome cuando no hacen falta; la degradación de Cryptochrome activa Period; y así empieza un nuevo ciclo, con lo que se encienden otros genes que ordenan la síntesis de otras proteínas con oscilación circadiana.

El grupo de Takahashi lo han descubierto gracias a un ratón mutante, Overtime, que encontraron tras analizar a unos 3.000 ratones, y cuya habilidad consiste en seguir un ritmo circadiano de 26 horas en vez de 24. Ahora se sabe que el reloj de Overtime se mueve más despacio porque tiene una mutación en Fbxl3 que impide limpiar el exceso de proteínas Cryptochrome, y por tanto no permite que Period se active correctamente. Takahashi y sus colaboradores seguirán investigando el papel de la degradación de las proteínas en la regulación del reloj biológico.

Paginación dentro de este contenido

  •  No hay ninguna página anterior
  • Estás en la página: [Pág. 1 de 2]
  • Ir a la página siguiente: Terapias de luz »



Otros servicios


Buscar en
Fundación EROSKI

Validaciones de esta página

  • : Conformidad con el Nivel Triple-A, de las Directrices de Accesibilidad para el Contenido Web 1.0 del W3C-WAI
  • XHTML: Validación del W3C indicando que este documento es XHTML 1.1 correcto
  • CSS: Validación del W3C indicando que este documento usa CSS de forma correcta
  • RSS: Validación de feedvalidator.org indicando que nuestros titulares RSS tienen un formato correcto